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Abstract. We survey the topic of free isometric actions of groups
on Zn-trees. We record some new results not explicitly stated in the
literature.

1. Introduction

The theory of isometric actions of groups on Λ-trees (where Λ is a li-
nearly ordered abelian group) has its origins in a paper of Lyndon where
integer-valued functions (‘length functions’) on groups satisfying two par-
ticular sets of axioms are studied, and it is shown that a group that admits
such a function is a free group in one case and a free product in the other
case. Chiswell later considered a weaker set of axioms for length functions
and demonstrated a duality between groups equipped with such a length
function and group actions by graph automorphisms on trees. The sets of
axioms considered by Lyndon then correspond to the case where the ver-
tices have trivial stabilisers (in the first case) and the edges have trivial
stabilisers (in the second case).

By the time this result was published, another fundamental duality had
been discovered, namely Bass-Serre theory, which gives an equivalence be-
tween group actions (without inversions) on a tree and so-called graphs of
groups. This theory has become an important and well-established tool in
group theory, exhibiting how a group that admits a suitably non-trivial ac-
tion on a tree is built up from its vertex stabilisers (and the fundamental
group of the corresponding quotient graph) by amalgamated free products
and HNN extensions.

Group actions on trees are thus a well-established theme in combinatorial
group theory, and the dualities outlined above give two ways to think, in par-
ticular, of free groups; namely as a group equipped with a length function,
and as a group acting on a tree with trivial vertex stabilisers. It is inter-
esting to note that these viewpoints give a geometric understanding of the
combinatorial arguments, attributed to Nielsen and Schreier respectively, of
the classical theorem that bears their names. Group actions on trees thus
provide a way of unifying, and making more natural, the original proofs of
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this theorem. (Length functions and Bass-Serre theory similarly give two
new proofs of Kuroš’s theorem concerning subgroups of free products.)

Lyndon’s arguments make relatively little use of properties peculiar to
the integers, prompting him to speculate that the study of integer-valued
length functions on groups might be profitably generalised to that of length
functions whose codomain is the real additive group or, more generally,
an ordered abelian group. The definition of Λ-tree where Λ is an ordered
abelian group was given some 22 years later, by Morgan and Shalen, in the
course of their work on compactifications of character varieties. One is led
to the notion of an isometric group action on a Λ-tree, and thus to that
of a Λ-valued length function, just as in the case of action of an ordinary
tree: given a fixed basepoint u, one defines L(g) = Lu(g) = d(u, gu) for
each group element g. One can axiomatise the Λ-valued functions that
arise in this way, giving an analogue of Chiswell’s theorem for an arbitrary
ordered abelian group Λ. That is, there is a natural duality between Λ-
valued functions on a group G satisfying a certain set of axioms on the one
hand, and isometric actions of G on Λ-trees on the other.

The natural challenge, posed by Alperin and Bass in their detailed study
of isometric actions on Λ-trees, is to develop a systematic theory of such
actions akin to Bass-Serre theory, which gives as complete a description as
one could hope for of groups from their actions on Λ-trees in the special
case Λ = Z. Since it is now generally considered too ambitious to attempt
to produce a single theory for arbitrary Λ, the more modest goal is to look
at particular classes of ordered abelian groups, and to look at certain classes
of actions. In particular, free actions of groups on R-trees have received a
great deal of attention from geometric group theorists. It was conjectured
by Lyndon (in the language of length functions) that a group that admits
a free action on an R-tree is a free product of subgroups of R. The first
counterexamples were described by Alperin and Moss in 1980, and the first
finitely generated counterexamples were given by Morgan and Shalen in
1991, when they showed that the fundamental groups of closed surfaces
(with three exceptions) also admit free isometric actions on R-trees. Rips
later showed that these are the only freely indecomposable finitely generated
counterexamples.

Theorem 1 (Rips’ Theorem). Let G be a finitely generated group acting
freely on an R-tree. Then G is the free product of free abelian and surface
groups, where any surface is permitted except the connected sum of one, two
or three projective planes.

Although group actions on R-trees have received much attention, partic-
ularly in the last 12 years or so, and are now relatively well understood,
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there has been somewhat less progress in the study of group actions on Λ-
trees for more exotic Λ. There is perhaps a perception that consideration
of group actions on such Λ-trees is more trouble than it is worth. It is our
contention, however, that such group actions should be more widely known,
particularly in the case where

Λ = Zn = Z× Z× · · · × Z︸ ︷︷ ︸
n

for some n ∈ N. This is due to a combination of factors: firstly there are
now several interesting examples of such actions arising ‘in nature’; secondly,
there has been much progress in the understanding of group actions on Zn-
trees, as a result of work by Bass; and thirdly, there are a number of very
interesting open questions to guide further research.

Readers wishing to learn about group actions on R-trees have a variety
of good surveys to choose from, notably [4], [21] and [9]. For the case of
general Λ, we refer the reader to [17] where Λ-trees are first defined, [1] for
the first systematic (and technical) treatment and [7] for an accessible and
uptodate account.

In the course of this article we shall review the general theory of Λ-
trees and then look more closely at free isometric actions on Zn-trees. It
should be noted that this last topic has received some interest of late due
in connections with the solution of the Tarski problem in [11], [12] and also
in [20].

2. Basic theory of Λ-trees

For this section, Λ will denote an arbitrary ordered abelian group, which
will be written additively. That is to say, (Λ,+) is an abelian group, and ≤
is a linear (i.e. total) order on Λ satisfying a ≤ b ⇒ a + c ≤ b + c.

Let Λi (i = 1, 2, . . . , n) be ordered abelian groups. We define a linear
order on

∏
Λi = Λ1 × Λ2 × · · · × Λn, by declaring (λi)n

i=1 < (λ′i)
n
i=1 if

λi0 < λ′i0 where i0 = min{i : λi 6= λ′i}. This is called the lexicographic
order on

∏
Λi. It should be noted that this order depends very much on

the direct decomposition of Λ: there are countably infinitely many ways of
defining such an order on Z×Z, depending on which basis one chooses. Nor
are lexicographic orders the only natural orders on Z×Z, for the subgroups
〈1, α〉 of the real additive group give uncountably many distinct linear or-
ders on the free abelian group of rank 2, each compatible with the group
structure.

It is clear that every subgroup of an ordered abelian group is naturally an
ordered abelian group in its own right. Let Λ′ be a subgroup of Λ with the
property that if a, c ∈ Λ′ and a ≤ b ≤ c then b ∈ Λ′. We then call Λ′ a convex
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subgroup of Λ. Examples include the trivial subgroup 0, and Λ itself. In the
case where Λ ≤ R these are the only examples. Conversely, if Λ has at most
two convex subgroups then there is an order-preserving embedding of Λ in
R. Such an ordered abelian group is said to be archimedean. Archimedean
ordered abelian groups are also characterised by the property that for all
x, y ∈ Λ with y 6= 0, there exists n ∈ Z with x < ny.

The ordered abelian group
∏

Λi has convex subgroups of the form
0× · · · × 0×Λi+1 × · · · ×Λn. If each Λi is archimedean, these are the only
convex subgroups. If Λ is finitely generated, then Λ is expressible as a direct
product of archimedean Λi with the lexicographic order.

A Λ-metric space is a pair (X, d), where d : X × X −→ Λ is function
satisfying

M1. d(x, y) = 0 ⇔ x = y; and
M2. d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X.
If Λ = R this is equivalent to the usual definition of metric space. Note

that in general, we have the additional familiar properties that d takes non-
negative values and is symmetric. The most obvious generic example of a
Λ-metric space is Λ itself, with d(λ, µ) = |λ− µ| = max{λ− µ, µ− λ}.

An isometry between Λ-metric spaces is a function that preserves dis-
tances. Note that while such a function is guaranteed to be injective (by
M1), it need not be surjective. A segment in Λ is a set of the form

[λ, µ]Λ = [µ, λ]Λ = {κ ∈ Λ : λ ≤ κ ≤ µ}
where λ ≤ µ. (The subscript will of course usually be suppressed.) Let X
be a Λ-metric space. A segment in X is an isometry φ : [0, α]Λ −→ X. The
points φ(0) and φ(α) are called the endpoints of the segment φ. If every pair
of points of X arise as the endpoints of some segment, then X is said to be
geodesic. If, for each x and y in X, there is a unique segment φ : [0, α] −→ X
with φ(0) = x and φ(α) = y, then X is said to be geodesically convex, and
the image of such a segment in X is denoted [x, y] = [x, y]X .

We can now give a definition of Λ-tree: this is a Λ-metric space (X, d)
which is geodesically convex and which satisfies the following properties, for
all x, y, z ∈ X.

(i) [x, y] ∩ [y, z] = [y, w] for some w ∈ X;
(ii) [x, y] ∩ [y, z] = {y} ⇒ [x, z] = [x, y] ∪ [y, z].

The reader should convince herself that in the case Λ = Z, this definition
describes those metric spaces that arise as the path metric on the vertex set
of a tree T in the ordinary sense. Moreover, there is a natural one-to-one
correspondence between graph automorphisms of T and isometries of V (T ).
The study of group actions by automorphisms on trees is thus equivalent to
the study of isometric actions on Z-trees.
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Each ordered abelian group Λ is a Λ-tree considered as a Λ-metric space.
Since we will be primarily concerned with Zn-trees, let us give a concrete
description of a simple (Z× Z)-tree.

Let X denote the (Z× Z)-tree {(j, n) : n ∈ Z, j = 0, 1}, where

d((j1, n1), (j2, n2)) =
{

(0, |n1 − n2|) if j1 = j2
(1, n2 − n1) otherwise.

This is perhaps the simplest example of a (Z×Z)-tree, and is best pictured
as a pair of copies of Z joined end to end. Here we have two ‘balls of
radius 0× Z’, namely the sets {(j, n) : n ∈ Z} (j = 0, 1), and an associated
‘quotient’ Z-tree consisting of two vertices. Note however, this is not the
only compatible (Z × Z)-metric that can be defined on X: for k ∈ Z, we
have the metric dk given by dk((0, n), (1,m)) = (1,m− n + k).

More generally, a (Z × Λ0)-tree is best pictured as a Z-tree, where each
vertex is replaced by a Λ0-tree, and for each edge incident to a particular
vertex, there is an associated ‘end’ or ‘point at infinity’ of the Λ0-tree. As
the multitude of compatible metrics on X above suggests, a (Z×Λ0)-metric
is not determined by these Λ0-trees together with the Z-metric on the set
of Λ0-trees: the metric is determined in addition by a choice of ‘end maps’
for each adjacent pair of Λ0-trees.

There is a classification of (bijective) isometries σ : X −→ X of Λ-
trees analogous to that of ordinary trees. Either (i) σ fixes a point, in
which case the set of all fixed points forms a subtree — that is, a subset
A such that x, y ∈ A implies [x, y] ⊆ A; (ii) σ fixes no point and there
is a σ-invariant segment [x, y] which is fixed by σ2; or (iii) there is a σ-
invariant linear subtree Aσ of X on which σ acts by translations. Moreover,
Aσ contains every linear σ-invariant subtree in this case. These are called
elliptic isometries, inversions and hyperbolic isometries respectively and the
set Aσ is called the characteristic set of σ. It is convenient to let Aσ denote
the set of fixed points when σ is elliptic, and to put Aσ = ∅ when σ is an
inversion.

Definition 2. An isometric action of a group on a Λ-tree X is free if there
are no inversions and the stabiliser of each point of X is trivial. We say
that a group G is Λ-free if G admits such an action on some Λ-tree, and
say that G is tree-free if it is Λ′-free for some Λ′.

2.1. Properties of tree-free groups

Theorem 2.1.
(i) Λ, as an additive group, is Λ-free. In particular, the natural action

of Λ on itself by translations is free.
(ii) The class of Z-free groups is precisely the class of free groups.
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(iii) The class of Λ-free groups is closed under taking subgroups.
(iv) If G is Λ-free and Λ embeds (as an ordered abelian group) in Λ′,

then G is Λ′-free.
(v) Any tree-free group is torsion-free.
(vi) Tree-free groups have the CSA property. That is, every maximal

abelian subgroup, M , is malnormal; meaning that Mg ∩M = 1 for
all g 6∈ M .

(vii) Commutativity is a transitive relation on the non-identity elements
of a tree-free group.

(viii) Soluble subgroups of tree-free groups are abelian.
(ix) If G is Λ-free, then any abelian subgroup can be embedded in Λ. If

in addition G is finitely generated, G is free abelian.
(x) Tree-free groups cannot contain Baumslag-Solitar groups other than

Z × Z. That is, no group of the form 〈a, t : t−1apt = aq〉 can be a
subgroup of a tree-free group unless p = q = ±1.

(xi) Any two generator subgroup of a tree-free group is either free or
free abelian.

(xii) The class of tree-free groups is closed under taking free products.

We note that (i) is elementary and we have already observed that group
actions on Z-trees are equivalent to group actions on simplicial trees. Hence
(ii) is the well known statement that free groups are the groups which act
freely on trees. Property (iii) is elementary, (iv) is a manifestation of the
base change functor – see Theorem 2.3 – and (v) is a consequence of the
classification of isometries. Property (vi) holds because two non-trivial ele-
ments of a Λ-free group G commute if and only if they act as translations
along the same linear subtree. It follows that proper centralisers of G, max-
imal abelian subgroups of G and stabilisers of axes of non-trivial elements of
G describe the same subgroups of G. Thus if γ 6= 1 belonged to a maximal
abelian subgroup M = CG(x) as well as to Mg = CG(xg) it would follow
that Ax = Aγ = Axg , whence M = Mg. A simple geometric argument
shows that g cannot stabilise a linear subtree unless it is contained in Ag.
Thus Ag = Ax, giving g ∈ M .

Properties (vii) and (viii) can now be easily deduced from (vi). Property
(ix) relies on the same reasoning as in (vi), that an abelian subgroup must
stabilise and act as translations along a Λ-line and a similar argument may
be used to prove (x). The verification of (xi) requires a more involved
analysis, which we shall not attempt here but can be found in [7].

To give some indication of why free products of Λ-free groups are Λ-free,
we introduce the notion of a Λ-valued Lyndon length function on a group
G. This is a function L : G −→ Λ satisfying axioms L1-L4 below. First
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define c(g, h) for a pair of elements of G to be 1
2 (L(g) + L(h) − L(g−1h)),

noting that this is an element of 1
2Λ ⊃ Λ.

L1: c(g, h) ∈ Λ
L2: L(1)=0
L3: L(g−1) = L(g)
L4: c(g, h) > c(g, k) ⇒ c(g, k) = c(h, k)

Examples of Λ-valued Lyndon length functions include the following. Let
(X, d) be a Λ-tree and x ∈ X, and suppose that G acts isometrically on X.
Then putting L(g) = Lx(g) = d(x, gx) for g ∈ G defines a Lyndon length
function. This in fact accounts for all examples.

Theorem 2.2 (Chiswell). Let L be a Λ-valued Lyndon length function on
a group G. There exist a Λ-tree (X, d), a point x ∈ X, and an isometric
action of G on X such that L(g) = d(x, gx) for all g ∈ G.

In fact Chiswell proved a somewhat stronger result concerning the unique-
ness of such an X — we refer the reader to his book [7] for details.

The Lyndon length function associated with an isometric action on a
Λ-tree is not the only one: one also has the associated translation length
function , given by

‖g‖ =
{

min{d(x, gx) : x ∈ X} if g is not an inversion
0 otherwise.

It can be shown that this minimum is always realised. We record two
properties relating the two length functions we have defined.

(i) Lx(g) = ‖g‖+ 2d(x,Ag) if g is not an inversion.
(ii) ‖g‖ = max{0, Lx(g2)− Lx(g)}.

Here, it should be noted that for points x /∈ Ag, there is a unique closest
point of Ag to x; the distance between these points is the one referred to
in (i). While Ag = Agn for all n 6= 0 in the case where g is hyperbolic, if g
fixes a point, it is possible that Ag2 ⊃ Ag. We may have Lx(g2)−Lx(g) < 0
in this case.

Free actions are characterised, in the language of length functions, by the
facts (i) ‖g‖ > 0 for all g 6= 1, and (ii) Lx(g2) > Lx(g) for all g 6= 1. The
latter follows from the fact that ‖gn‖ = |n|‖g‖ for all g.

We note that there are axioms for the translation length function which
were shown to essentially characterise actions on Λ-trees, up to equivariant
isometry, by Parry, [18].

Now consider a free product G = ∗i∈IGi of groups Gi, and suppose that
each Gi is Λ-free. Then, equivalently, each Gi admits a Lyndon length
function Li with the additional property that Li(g2) > Li(g) for all g ∈ Gi

and i ∈ I. We now define a length function L on G from the given length
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functions on the Gi. Given an arbitrary element γ = g1g2 . . . gn of G (where
each gi and gi+1 are non-trivial and belong to distinct free factors) we put

L(γ) =
n∑

i=1

Lji(gi).

It is easy to check that L satisfies L1, L2 and L3, and that L(g2) > L(g) for
all g 6= 1. A somewhat tedious check establishes L4. By Chiswell’s theorem,
we can conclude that there is a free action of G on a Λ-tree.

This argument is not sufficient to show that a free product of tree-free
groups is tree-free; in other words, if the ordered abelian group varies with
i ∈ I, the definition of L above fails. However, using the base-change functor
as described below, it is possible to produce a single ordered abelian group
Λ from the Λi, and a set of suitable Λ-valued length functions so that the
argument above works.

It is not initially clear that there are any other examples of Λ-free groups
— Lyndon stated a conjecture in [15] to the effect that all R-free groups can
be accounted for in this way, and it was 11 years before a counterexample
was found. It was shown by Morgan and Shalen in 1991 that if M is a
closed surface other than the connected sum of at most 3 projective planes,
then π1(M) admits a free action on an R-tree.

An important device relating Λ1-trees and Λ2-trees is the base change
functor.

Theorem 2.3 (Base-Change Functor). Let h : Λ1 → Λ2 be an order pre-
serving homomorphism between ordered abelian groups and let G be a group
acting by isometries on a Λ1-tree, (X1, d1). Then there is a Λ2-tree, (X2, d2)
on which G acts by isometries and a mapping φ : X1 → X2 such that
(i) d2(φ(x), φ(y)) = h(d1(x, y)), for all x, y ∈ X1,
(ii) φ(gx) = gφ(x) for all g ∈ G and x ∈ X1,
(iii) ‖g‖X2 = h(‖g‖X1) for all g ∈ G.

The Λ2-tree X2 constructed in the proof is essentially the smallest pos-
sible, and is denoted X1 ⊗Λ1 Λ2 even though the definition depends on the
choice of h. It is an easy exercise to show that in general if the action of G
on X1 is free and h is injective, then the action of G on X2 = X1 ⊗Λ1 Λ2 is
also free.

Let us consider some examples.

1: The barycentric subdivision of a Λ-tree
Let (X, d) be a Λ-tree, and h the endomorphism λ 7→ 2λ. Then the base

change functor gives rise to a Λ-tree X ′ with the property that
d′(φ(x), φ(y)) = 2d(x, y). It can be seen from the definition of segment
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that there exists a midpoint of [φ(x), φ(y)]; that is, a point u such that
d′(φ(x), u) = d′(u, φ(y)) = λ.

The importance of this example arises from the fact that if σ is an inver-
sion of X, and [x, y] is stabilised by σ, then the induced isometry of X ′ must
fix the midpoint. Thus, for any isometric action of G on a X, the associated
action on X ′ is without inversions. Since h is an embedding, X embeds in
X ′, and σ is hyperbolic as an isometry of X precisely when it is hyperbolic
as an isometry of X ′. Indeed φ is an equivariant embedding of X in X ′, so
the actions on X and X ′ are essentially equivalent for most purposes. This
is why it is often somewhat benignly assumed that an isometric action on
a Λ-tree is without inversions.

2: Λ′-trees where Λ′ ≤ Λ
For such Λ′, the base change functor applied to the inclusion map enables

us to embed Λ′-trees equivariantly in Λ-trees, and enables us to view group
actions Λ′-trees as a particular case of actions on Λ-trees.

In particular let (X, d) be a Z-tree, and h : Z −→ R the inclusion map.
The base change functor gives rise to an R-tree real(X), called the geometric
realisation of X, which is usually defined to be a quotient of the union of
closed intervals Ie where e ranges through the set of edges of the associated
simplicial tree.

3: Λ′-trees where h : Λ ³ Λ′

In each of the examples so far h has been an embedding. This need not
always be so: in what follows we will consider the case where h : Λ −→ Λ′ is
an (order-preserving) epimorphism. In this case, the kernel Λ0 is a convex
subgroup of Λ. (Conversely, for any convex subgroup Λ0, the quotient group
is itself an ordered abelian group onto which Λ maps via the natural map.)

It is easy to check that the relation ∼ on a Λ-tree given by

x ∼ y if d(x, y) ∈ Λ0

is an equivalence relation. We call the equivalence classes balls of radius
Λ0. The convexity of Λ0 means that such balls are subtrees. The distance
between points belonging to distinct balls is larger than nλ0 for any λ0 ∈ Λ0

and n ∈ Z; we think of this distance as being ‘infinitely larger’ than any
element of Λ0.

The Λ′-tree arising from h may now be thought of as obtained from the
Λ-tree by collapsing each of the balls of radius Λ0 to a point. In the opposite
direction the Λ-tree X is, in a certain sense, built up from the Λ′-tree X ′

and the balls of radius Λ0, which are themselves naturally Λ0-trees.
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3. Group actions on (Z× Λ0)-trees

We describe in this section some results for groups acting isometrically
on a Λ-tree, where Λ is of the form Z× Λ0 for some ordered abelian group
Λ0 and where the product is given the lexicographic ordering. One has a
map from Z × Λ0 to Z, as in example 3, by factoring out Λ0 and we can
apply the base change functor, via this map to deduce the following.

Theorem 3.1. Let G be a group acting isometrically on a Z×Λ0-tree. Then
G acts on a Z-tree (a simplicial tree). Hence, by Bass-Serre theory, G has
a graph of groups decomposition where each vertex group acts isometrically
on some Λ0 tree and there is a homomorphism from each edge group into
Λ0. If, additionally, the action is free, then each vertex group is Λ0-free and
each each edge group is a maximal abelian subgroup of G that embeds into
Λ0.

Let us give some justification for this result. The effect of applying the
base change functor, using the natural map Z×Λ0 → Z, is to form a Z-tree
X∗ by collapsing all the balls of radius Λ0. Each of these balls is a Λ0-tree
and these form the vertex set of X∗. Hence the vertex stabilisers of X∗ act
on Λ0-trees.

An edge of X∗ corresponds to a pair of ends of full Λ0 type in adjacent Λ0

balls. Here an end of full Λ0-type is defined by first defining a half Λ0-line
to be the isometric image of [0,∞) ⊆ Λ0 and two such half lines are said to
be equivalent if they meet in another half line. The ends of full Λ0-type are
then the equivalence classes. The definition of general ends is slightly more
technical, but the important feature is that, in our situation, a vertex group
Gv has an associated Λ0-tree, Xv, and acts on the set of ends Ends(Xv).

Also, given any end ε ∈ Ends(Xv), there is an induced homomorphism,
τε, from the stabiliser of ε to Λ0, τε : Gε → Λ0. In fact, τε(g) = ±‖g‖, where
the sign depends on whether g translates toward ε or away from it.

Thus, in the Z-tree, X∗, edge groups are end stabilisers. In the case of
a free action, the vertex stabilisers act freely on Λ0 trees and the maps τε

become monomorphisms.

It then becomes natural to ask whether there is a converse to this result.
That is, given a group, G, in terms of a graph of groups decomposition,
associated Λ0-trees and various other conditions, when can we contruct an
action of G on a (Z× Λ0)-tree? This is answered by results of Bass.

We introduce first some notation and conventions. We regard a tree X∗

as a set of vertices to which are associated its set of directed edges e = (x, y).
We write ∂0(e) = x and ∂1(e) = ∂0(ē) = y for such an edge.
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Part of the structure of a graph of groups (G, Y ∗) is an embedding of
each edge group G(e) in its end vertex group G(∂0(e)) — we denote such an
embedding by αe.

Theorem 3.2 (Bass 3.8). Let (G, Y ∗) be a graph of groups with fundamental
group G, and for vertices or edges s of Y ∗ let Gs denote the corresponding
group. For (vertices) x∗ ∈ Y ∗, let Xx∗ be a Λ0-tree on which Gx∗ acts.

For each edge e of Y ∗, let εe be an end of Xx∗ of full Λ0-type, and τe the
homomorphism Gεe

−→ Λ0.
Suppose that the following are also satisfied.

(i) For edges e of Y ∗, the end stabiliser (G∂0(e))εe is equal to αe(Ge)
and

τe ◦ αe = −τē ◦ αē.

(ii) For distinct edges e and f of Y ∗ with ∂0(e) = ∂0(f), the ends εe

and εf lie in distinct G∂0(e) orbits.
There is a Λ-tree X on which G acts, with X∗ ∼= X ⊗Λ Z.

Remarks: (a) Assumption (i) guarantees that if g fixes an edge e =
(x∗, y∗)of X∗ the translation length and orientation of g, as an element of
both Gx∗ and Gy∗ , are compatible. With regard to the requirement that
each εe is of full Λ0-type, it is worth noting that to any Λ′-tree X ′, there is
the associated Λ′-fulfilment λ(X ′), which is a Λ′-tree in which X ′ embeds
Aut(X ′)-equivariantly and of which every end is of full Λ′-type. See [2, E1]
for details.

(b) Note that the metric on X is essentially determined by the data
required by the hypotheses. There is however some degree of freedom in
terms of what Bass calls end maps.

(c) It is easy to see that the resulting action of G on X is free if and only
if the action of each vertex group Gx∗ on X(x∗) is free.

Armed with this result, we can give many examples of free actions on
Λ-trees. In the following corollary, the group G is the fundamental group of
a graph of groups with a single vertex and a single edge loop. Since maximal
abelian subgroups correspond to line stabilisers, one can associate the two
ends of this line to the two oriented edges to apply the previous result and
get the following. Bass calls the group G a ‘benign’ HNN extension.

Corollary 3.3 ([2], [11], [12]). Let G0 be a group that admits a free action
on a Λ0-tree, H a maximal abelian subgroup, and put

G = 〈G0, t | t−1ht = h for all h ∈ H〉.
Then G acts freely on a (Z× Λ0)-tree.
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4. Zn-free groups

Since Z-free groups are precisely free groups, the results of the previous
section are particularly powerful when Λ0 is a cartesian product of a finite
number of copies of Z. That is, when we are considering Zn-actions. Of
particular interest is the case of free Zn-actions and Zn-free groups.

One motivation for considering this class of groups is that one has some
good examples. For instance, using a construction involving foliations on
surfaces and taking the fundamental group of a finite collection of surfaces,
glued together at the boundary, Liousse was able to prove the following.

Theorem 4.1 ([13]). A group is said to act affinely on an R-tree if to
each group element, g, there is associated a postive constant, µg, such that
d(gx, gy) = µgd(x, y). Then there are groups which act freely and affinely
on R-trees, but admit no free isometric action on an R-tree.

However, it turns out [16] that all these groups acting freely and isomet-
rically on (Z× Z)-trees.

One of the most important examples of groups in this class have been
considered by Kharlampovich and Myasnikov, who have proved the follow-
ing.

Recall that a group G is said to be fully residually free if, for any finite set
of non-trivial elements g1, . . . , gk, there exists a homomorphism, φ : G → F ,
to a free group F , such that φ(gi) 6= 1 for all i.

Theorem 4.2 ([11], [12]). Let G be a finitely generated fully residually free
group. Then G acts freely on some Zn-tree.

Indeed, they proved a conjecture that every finitely generated fully resid-
ually free group embeds in Lyndon’s exponential group FZ[x], which is the
union of the groups Gn, where G0 = F is a free group and

Gn+1 = 〈Gn, tn | t−1
n untn = un, un ∈ Cn〉

where Cn is some proper centraliser in Gn. Since G0 acts freely on a Z-tree,
inductively Gn acts freely on a (Zn+1)-tree — this hinges on the observation
that the maximal abelian subgroups of Gn are exactly the proper centralisers
in Gn. Since every finitely generated subgroup of FZ[x] is a subgroup of some
Gn, this proves the theorem.

We note that Sela in [20] proves that any finitely generated fully residually
free group is Rn-free for some n. However, to answer Conjecture Q 3.4 on
Bestvina’s problem page in the negative, it is not true that any Rn-free (or
even Zn-free) group is fully residually free.
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Theorem 4.3 ([8], [14]). The fundamental group G of the connected sum of
three projective planes is (Z × Z)-free. However, any homomorphism from
G to a free group has a cyclic image. Hence G is not fully residually free.

We note that while Theorem 4.2 proves that most surface groups are
Zn-free, [16] prove that every surface group, except the fundamental group
of the projective plane and the the Klein bottle is (Z × Z)-free. And it is
easy to see that the stated two exceptions cannot act freely on any Λ-tree.
Moreover, results from [16] indicate that the class of Zn-free groups is much
larger than the class of fully residually free groups.

Theorem 4.4. Let G1 and G2 be Zn-free groups. Then the amalgamated
free product G1 ∗Z G2 is Zm-free for some m, provided that the image of Z
is maximal abelian in each Gi.

One would expect that the proof of the above theorem would consist of
‘rescaling’ the element generating the infinite cyclic subgroup in each factor.
However, this naive approach is not quite sufficient in the non-Archimedean
case. For instance, let us suppose that both G1 and G2 are Z3-free and
denote by gi the generator in Gi of the image of Z (i = 1, 2). Then we may
have that for the given actions, ‖g1‖ = (1, 0, 0), while ‖g2‖ = (0, 1,−1),
both of which are positive elements of Z3. In order to apply Theorem 3.2, it
is essentially sufficient to find actions in which g1 and g2 have the same Zn

translation length. The first problem is that they are not even comparable,
but this is easily managed by embedding Z3 into Z4 in two different ways and
applying the base change functor. One would then get that ‖g1‖ = (0, 1, 0, 0)
and ‖g2‖ = (0, 1,−1, 0). But one is left with the problem that rescaling, even
applied to coordinates, can only be multiplication by a positive element and
the result has to be obtained by defining a new translation length function
or a Lyndon length function from the old.

Although we are not aware that the following fact has been recorded, it
is fairly straightforward to show that the class of groups which are finitely
generated and act freely on some Zn-tree have solvable word problems. It
follows from the following elementary fact about graphs of groups.

Theorem 4.5. Let G be a finite graph of groups in which all the vertex
groups have solvable word problem and in which each edge group has solvable
membership problem in its respective vertex groups. Then π1(G) has solvable
word problem.

One can use this to show that any finitely generated Zn-free group has
solvable word problem by induction on n. The case n = 1 corresponds to
the class of finitely generated free groups where the result is well known.
Suppose the then that we have shown that the class of finitely generated
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Zn−1-free groups have solvable word problem and consider a finitely gener-
ated Zn-free group G. By Theorem 3.1, G = π1(G) and the vertex groups
must be Zn−1-free groups. Since G is finitely generated, we can take G to
be finite. Moreover, the vertex groups must be finitely generated and hence,
by induction, have solvable word problem. The edge groups are maximal
abelian subgroups in their vertex groups and must, by the CSA property
Theorem 2.1, have solvable membership problem. (If M is maximal abelian
in a tree-free group, then the CSA property says that g ∈ M if and only
if g commutes with some fixed non-trivial element of M . This is decidable
from the word problem.) Thus the hypotheses of the above Theorem would
hold and G would has solvable word problem.

Note that while Zn-free groups have all the properties of general tree-free
groups, some of which we have listed in Theorem 2.1, one can also show that
they have more.

(i) The class of Zn-free groups is closed under taking free products.
(ii) Any abelian subgroup of a Zn-free group is free abelian of rank at

most n.
(iii) Zn-free groups are coherent. That is, any finitely generated sub-

group of a Zn-free group is finitely presented.
(iv) A finitely generated Zn-free group, G, is of type F . This means

that G is the fundamental group of a finite cell complex whose
universal cover is contractible and the same is true of any finitely
generated subgroup.

(v) A finitely generated Zn-group with no Z × Z subgroups is word
hyperbolic, as are all its finitely generated subgroups.

(vi) The class of Zn-free groups have solvable word problem.

Note that (i) and (ii) are restatements of (ix) and (xii) of Theorem 2.1.
Items (iii) and (iv) are consequences of Theorem 3.1, as is (v) once one
applies the Combination Theorem of [3]. Item (vi) is proved above.

In light of these results it seems fairly natural to ask if Zn-groups act
properly and cocompactly on CAT(0) spaces (see [5]), as they share many
of the same properties. While that question remains open, it is clear that
not every group which acts properly and cocompactly on a CAT(0) space
is Zn-free. For instance, the direct product of two non-abelian free groups
of finite rank cannot be tree-free, because that group is not commutative
transitive, but does act on a CAT(0) space, properly and cocompactly.

The theory of Zn-free groups seems much more tractible than the general
theory of tree-free groups, and so one is led to ask the following.

Question 4.6. Is every finitely generated tree-free group Zn-free for some
n?
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A positive answer to this question would clearly simplify the study of
tree-free groups and a useful first step in trying to prove it may be to show
that Rm-free groups are Zn-free for some n, perhaps by using the Rips
machine.

An affirmative answer to this question (together with property (iii) of
Zn-free groups) would, in particular, imply an affirmative answer to the
following.

Question 4.7. Is every finitely generated tree-free group finitely presented?

As we have noted, all of the groups described in [13] which admit a free
affine action on an R-tree admit a free isometric action on a Z× Z-tree. It
is natural to wonder whether this reflects a general fact.

Question 4.8. Suppose that G admits a free affine action on an R-tree. Is
G Zn-free?

Since many of the groups we have discussed admit free actions, not merely
on Zn-trees for some n, but on (Z×Z)-trees, it seems worthwhile to produce
examples of groups that admit ‘essential’ free actions on Zn-trees.

Problem 4.9. Describe a family of groups Gn (n ∈ N) such that for all
n ∈ N

(i) Gn admits a free action on a Zn-tree;
(ii) Gn admits no free action on a Zm-tree for m < n;
(iii) Gn contains no free abelian subgroup of rank 2.

Observe that such groups Gn would be word hyperbolic, by the Combi-
nation Theorem of [3].

We note that Theorem 4.4 has no direct analogue for HNN extensions.
Indeed, it can be shown that a group of the form,

〈x, y, t | t−1[xm, yn]t = [xs, yt]〉
is tree-free if and only if it is (Z×Z)-free, which is if and only if (|m|−|s|)

and (|t| − |n|) have the same sign. This leads us to ask for what HNN
extensions of free groups with cyclic edge group admit a free action on a
Λ-tree.

Question 4.10. Are the following equivalent?
(i) A free group F acts freely on some Z-tree, in which the group ele-

ments u, v ∈ F have the same translation length.
(ii) The HNN extension 〈F, t | t−1ut = v〉 is tree-free.

Note that (i) implies that the HNN extension given in (ii) is actually
(Z × Z)-free, but it seems hard to find an essential counterexample to this
question.
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