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Abstract

In this paper we show that various groups are Zn-free. In particular
we show that almost every surface group is (Z×Z)-free as are the groups
of Liousse [11]. We also demonstrate that the class of Zn-free groups
is closed under taking amalgamated free products over an infinite cyclic
group as long as it is maximal abelian in each vertex group. It follows
that a large class of hyperbolic groups is Zn-free.

1 Introduction

Bass-Serre theory ([15], [6], [5]), the theory of group actions on simplicial trees,
has proven to be very successful in describing the structure of discrete groups.
In particular one can obtain a presentation for a group acting on a tree in terms
of the vertex and edge stabilisers, a graph of groups decomposition.

It is therefore natural to try to generalise the notion of tree in order to
broaden the scope of the theory. The study of isometric actions on real trees has
had some success, notably Rips’ Theorem which characterises finitely generated
groups that admit a free isometric action on an real tree ([7], [8], [4]), and has
become an established technique in geometric group theory.

There has been a further generalisation to group actions on Λ-trees, where
Λ is an ordered abelian group. This generalisation encompasses actions on
simplicial and real trees on taking Λ = Z and Λ = R respectively.

While several authors have extended many of the results from the theory of
real trees to that of Λ-trees ([4] provides a comprehensive exposition) this has
not been as widely adopted as a technique in the study of discrete groups as has
the theory of real trees. This is due in part to an incomplete understanding of
free actions on Λ-trees, and in part to a perceived lack of motivation in passing
from R to a more general Λ.

The goal of this paper is to provide examples of groups which act freely on
Zn-trees for some n. The original motivation was a paper of Liousse which,
among other things, constructs some groups (described in 2.3) that admit free
affine actions on real trees, but which do not admit any free isometric action on
a real tree.

We describe in Theorem 3.1 a family of one-relator groups that act freely
and isometrically on (Z× Z)-trees. As a consequence, we have

Corollary 3.4 Liousse’s groups are (Z× Z)-free.

Thus by considering more general Λ we can construct actions of Liousse’s
groups which are, in some sense, better behaved.

Another consequence of Theorem 3.1 is

Corollary 3.3 Every surface group except π1(RP) and π1(RP#RP) is (Z×Z)-
free. Hence every finitely generated R-free group is Zn-free for some n. Moreover
we can take n = max{2, ab(G)}, where ab(G) is the maximal rank of any free
abelian subgroup of G.
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We note that Gaglione and Spellman [9] have shown that π1(M) is (Z×Z)-
free when M = RP#RP#RP. Also, it has been shown in [10], that finitely
generated fully residually free groups are Zn-free, for some n. As every surface
group except the fundamental group of the connected sum of at most three
projective planes is fully residually free, Corollary 3.3 is largely known, though
we believe the bound on n to be new.

The main result of the paper, a consequence of Theorem 4.3, is

Theorem Suppose that G1 and G2 are Zn-free for some n. Then G1 ∗Z G2 is
Zm-free for some m ≥ n if and only if Z embeds as a maximal abelian subgroup
in each Gi.

A result of Bestvina and Feighn, [3], implies that if, in addition, G1 and
G2 are word hyperbolic, then G1 ∗Z G2 is also word hyperbolic if Z is maximal
abelian in each Gi. Thus one may construct many word hyperbolic groups which
act freely on some Zn-tree.

Throughout, we rely on results from Bass’s paper [2] which we recall in
2.4. The main difficulty in applying these results is the presence of technical
hypotheses concerning the particular actions on Zn-trees.

Our main theorem does not have an exact analogue in the case of HNN-
extensions. In fact, the group

〈x, y, t | t−1[x, y]t = [x2, y2]〉

is not Λ-free for any Λ.

2 Preliminaries

2.1 Λ-trees

We refer the reader to [4] for a full account of the basic theory of Λ-trees and
isometric actions thereon. We recall some of the details here.

Let Λ be a (linearly) ordered abelian group . Examples of ordered abelian
groups include R, and Zn equipped with the lexicographic order.

A Λ-metric space is defined in the same way as a conventional metric space
with R replaced by Λ. Thus Λ is itself a Λ-metric space by putting d(λ, µ) =
|λ−µ| = max{λ−µ, µ−λ}. A Λ-metric space X is geodesically convex if, for all
x, y ∈ X, there is a unique isometry φ : [0, d(x, y)]Λ −→ X with φ(0) = x and
φ(d(x, y)) = y. We denote the image of such an isometry by [x, y] = [x, y]X .

The Λ-metric space (X, d) is a Λ-tree if

(i). X is geodesically convex;

(ii). [x, y] ∩ [y, z] = [y, w] for some w ∈ X;

(iii). [x, y] ∩ [y, z] = {y} implies [x, y] ∪ [y, z] = [x, z].
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A Λ-tree can also be characterised as a geodesically convex Λ-metric space
which is 0-hyperbolic and which satisfies d(x, v) + d(y, v)− d(x, y) ∈ 2Λ for all
x, y, v ∈ X.

Associated to an isometric group action on a Λ-tree is the translation length
function ‖.‖ : G → Λ. The value of ‖g‖ is equal to 0 if g has a fixed point or is
an inversion, and is equal to min{d(x, gx) : x ∈ X} otherwise. We call an action
of G on a Λ-tree free if there are no inversions and only the identity element has
a fixed point. An action is thus free if and only if ‖g‖ > 0 for all g ∈ G\{1}.

A group that admits a free action on a Z-tree is a free group; this fact follows,
for example, from Bass-Serre theory. A group G is said to be Λ-free if G admits
a free isometric action (without inversions) on some Λ-tree, and tree-free if it
is Λ-free for some Λ. It is an elementary fact that tree-free groups are torsion
free and commutative transitive, that is, commutativity is a transitive relation
on non-identity elements. Clearly, any subgroup of a Λ-free group is Λ-free and
it can also be shown that free products of Λ-free groups are Λ-free.

Note that Λ, viewed as a Λ-metric space, is a Λ-tree. Moreover, Λ acts on
itself by translations and hence is Λ-free.

The natural and long-standing question of which groups are R-free was an-
swered, in the finitely generated case, by Rips in 1991:

Theorem 2.1.1 (Rips’ Theorem) A finitely generated group G admits a free
action on an R-tree if and only if G is expressible as a free product G1∗G2∗· · ·Gn

where each Gi is either a finitely generated free abelian group or the fundamental
group of a closed surface other than the connected sum of 1, 2 or 3 projective
planes.

2.2 Surface groups

There is a well-known classification of closed surfaces (i.e. compact, connected
2-manifolds without boundary) — see [13] for details. It follows from this clas-
sification that the fundamental group of an orientable surface M of genus g has
the presentation

π1(M) = 〈x1, y1, . . . , xg, yg|
g∏

i=1

[xi, yi] = 1〉

and the fundamental group of a non-orientable surface of genus g has the pre-
sentation

π1(M) = 〈x1, . . . , xg|
g∏

i=1

x2
i = 1〉.

2.3 Affine actions and Liousse groups

Let X be an R-tree. An action of G on X is said to be affine if, for each
g ∈ G, there is a positive real number αg such that d(gx, gy) = αgd(x, y) for
all x, y ∈ X. In her paper [11], Liousse examines affine actions on R-trees and
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constructs groups which admit a free, affine action on an R-tree, but do not
act freely and isometrically on an R-tree. The groups considered fall into two
Types.

Type I groups are obtained by taking a finite collection of surfaces, taking
one boundary component from each, and gluing the surfaces along these bound-
ary components via homeomorphisms. The fundamental group of the resulting
quotient space is a Type I group.

It follows from Van Kampen’s theorem (and using Tietze transformations, if
necessary) that Type I groups are isomorphic to an iterated free product with
amalgamation of the form, G = F1 ∗Z F2 ∗Z ∗ · · ·∗Z Fn, where each Fi is a finitely
generated free group. In fact, each amalgamated Z will be generated by the same
element of G since the embeddings in Fi have the same image for 2 ≤ i ≤ n−1,
though this will not be relevant for our purposes. The embedded image of each
cyclic group in the appropriate free group is a product of commutators, or a
product of (at least two) squares, of basis elements. In particular, these images
are maximal abelian in the respective free groups.

Type II groups are formed by taking two surfaces and gluing a boundary
component of one to a boundary component of the other via a map of some
degree k ≥ 1 (both of these boundary components are circles). The fundamental
group of the resulting space is a Type II group and is either a free group or has
a presentation of the form 〈x1, . . . , xn, y1, . . . , ym | w = vk〉. Here w corresponds
to the path around the boundary component of the first surface and is of the
form [x1, x2] . . . [x2r−1, x2r] where n = 2r, or x2

1 . . . x2
n and n ≥ 2. Similarly v

corresponds to the path around the boundary component of the second surface.
For our purposes it suffices to observe that v is a non-trivial word in y1, . . . , ym.

2.4 Free actions on (Z× Λ)-trees

We shall be concerned with showing that certain groups are Zn-free. In order
to do this we shall use results from [2] which we collect here for convenience.

Theorem 2.4.1 (Bass, [2]) (i). Suppose that G acts freely on a Λ-tree X
and that t1, t2 ∈ G each generates a maximal abelian subgroup of G. Fur-
ther assume that t1 is not conjugate to t−1

2 and that ‖t1‖X = ‖t2‖X . Then
the HNN-extension 〈G, x | x−1t1x = t2〉 is (Z× Λ)-free.

(ii). Suppose that G1, G2 act freely on Λ-trees X1, X2 respectively and that t1 ∈
G1, t2 ∈ G2 generate maximal abelian subgroups. Further, if we assume
that ‖t1‖X1 = ‖t2‖X2 , then the amalgamated free product G1 ∗〈t1=t2〉 G2 is
(Z× Λ)-free.

(iii). Suppose that G1, . . . , Gk are free groups, and let si ∈ Gi (1 ≤ i ≤ k − 1)
and ti ∈ Gi (2 ≤ i ≤ k) be two families of elements, none of which is a
proper power in their respective group. Then the amalgamated free product
G1 ∗〈s1=t2〉 G2 ∗〈s2=t3〉 ∗ · · · ∗〈sk−1=tk〉 Gk is (Z× Z)-free.

Part (i) of the theorem is Proposition 4.15 of [2]. Part (ii) follows from [2],
Theorem 4.7 in the same way that Proposition 4.15 follows from Theorem 4.7.
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Namely, one replaces each Xi by its Λ-fulfilment (see the appendix on ends in
[2]) and applies Theorem 4.7 of [2].

Let ε1 denote the attracting end of At1 ⊆ X1, and ε2 the repelling end of
At2 ⊆ X2. Then the stabiliser in Gi of εi is equal to 〈ti〉 by Theorem 1.10 of
[2] since this subgroup is maximal abelian in Gi, so that condition α of Bass’s
Theorem 4.7 is satisfied.

The condition that ‖t1‖X1 = ‖t2‖X2 and choice of ends εi ensures that we
have τε1 = −τε2 , and so Bass’s condition β is satisfied.

Finally, Bass’s condition γ is trivially satisfied, since there is only one unori-
ented edge in our graph of groups.

Part (iii) of the theorem follows from Theorem 4.9 of [2] once we note that
free groups are precisely the Z-free groups, that the conditions on si, ti en-
sure that the subgroups they generate are maximal abelian, and that condition
(iii)(γ) of Theorem 4.9 is trivially satisfied.

3 Some (Z× Z)-free groups

In this section we shall show that Liousse groups are (Z×Z)-free. We also show
that surface groups are (Z × Z)-free and hence that finitely generated R-free
groups are Zn-free. These will be easy consequences of the following result.

Theorem 3.1 Let G = 〈a, b, x1, . . . , xn | aba−1bε = w〉 where ε = ±1 and w is
any word in {x1, . . . , xn}. Then G acts freely on a (Z × Z)-tree, unless ε = 1
and w = 1.

Proof: Note first that if w = 1 and ε = −1, then G has the sole defining
relation [a, b] = 1 and is thus (Z × Z)-free since it is a free product of a free
abelian group of rank 2 with a free group. We will henceforth assume, therefore,
that w 6= 1.

By the Freiheitssatz [12], the set {b, x1, . . . , xn} is a basis for a free subgroup
of G which we will denote by F .

We first consider the case where w has even length in the given generators
of F . Thus we can write w = w1w2 where this product is reduced as written
and w1, w2 have the same length. Now consider a new basis X = {c, x1 . . . , xn}
of F given by c = w2b

−ε. As w does not involve b, the lengths of w1, w2 are
equal with respect to this new basis. Replacing b by (w2

−1c)−ε we get a new
presentation of G,

G = 〈a, c, x1, . . . , xn | a(w2
−1c)−εa−1 = w1c〉.

This realises G as an HNN-extension of F by the stable letter a and with
cyclic edge group.

Clearly, (w2
−1c)−ε and w1c have the same word length with respect to X and

they are both cyclically reduced since they each contain exactly one occurrence
of the basis letter c either at the start or at the end. Now let Γ be the Cayley
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graph of F with respect to the basis X. We have shown that (w2
−1c)−ε and

w1c have the same translation length when considered as isometries of Γ.
Recall that cyclically reduced conjugates in a free group are cyclic permuta-

tions of each other. Thus if (w2
−1c)ε and w1c were conjugate in F , it would force

ε = 1 and w2
−1 = w1. As the latter is not the case, we deduce that (w2

−1c)ε

and w1c are not conjugate in F . Thus we may apply part (i) of Theorem 2.4.1
to conclude that G is (Z× Z)-free.

In the case where w is not of even length, we consider the group

G1 = 〈a, b, y1, . . . , yn | aba−1bε = v〉

where the word v is obtained from w by replacing each occurrence of xi by y2
i .

We then map G to G1 by sending a to a, b to b and xi to y2
i ; it is easy to see

that this is an embedding. We can apply the above argument to show that G1

acts freely on a (Z× Z)-tree, and G acts by restriction.

Corollary 3.2 Let G be a group with presentation G = 〈X1 t X2 | w1 = wn
2 〉

where n ≥ 1, and where each wi is either a product x2
1x

2
2 . . . x2

mi
of squares of

distinct elements of Xi, or a product [x1, y1][x2, y2] . . . [xmi , ymi ] of commutators
of distinct elements of Xi. Assume that w1 is non-trivial and not equal to x2

1,
and that w2 6= 1 if w1 = x2

1x
2
2. Then G is (Z× Z)-free.

Proof: If w1 is a product of commutators, then the relation can be rewritten
as [x1, y1] = wn

2 [ym1 , xm1 ] . . . [y2, x2]. The right-hand side of this equation has
no occurrence of x1 or y1, and so, by Theorem 3.1, we conclude that G is
(Z× Z)-free.

If w1 = x2
1x

2
2 . . . x2

m1
where m1 ≥ 2, then putting a = x1x2, G can be written

in the form
〈X ′

1 tX2 | x1ax−1
1 a = wn

2 x−2
n . . . x−2

3 〉,

where X ′
1 = X1 ∪ {a}\{x2}. Once again, we can apply Theorem 3.1 (noting

that wn
2 x−2

m1
· · ·x−2

3 6= 1 by assumption) to conclude that G is (Z× Z)-free.

It follows from the corollary that π1(M) is (Z×Z)-free for any closed surface
M except for RP and RP#RP.

Moreover these exceptions are genuine: π1(RP) is not torsion-free, and in
the group π1(RP#RP) we have x2y2 = 1 = y2x2 which, in a tree-free group,
would force xy = yx by commutative transitivity. It follows that neither of
these groups is tree-free. The latter example also shows that Theorem 3.1 is
false if the case ε = 1, w = 1 is not excluded.

It is clear that finitely generated free abelian groups of rank n are Zn-free
and that a Zm-free group is also Zn-free for any n ≥ m — the latter can also
be seen as a consequence of Theorem 4.1. Moreover the class of Λ-free groups is
closed under the formation of free products. One can thus deduce the following
from Rips’ theorem.
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Corollary 3.3 Every surface group except π1(RP) and π1(RP#RP) is (Z×Z)-
free. Hence every finitely generated R-free group is Zn-free for some n. Moreover
we can take n = max{2, ab(G)}, where ab(G) is the maximal rank of any free
abelian subgroup of G.

Corollary 3.4 Liousse groups are (Z× Z)-free.

Proof: A group of Type I is (Z× Z)-free by part (iii) of Theorem 2.4.1.
An examination of the presentation of the Type II groups shows that they

are (Z× Z)-free by Corollary 3.2.

4 Constructing Zn-free groups

In this section we show that certain amalgamated free products G1 ∗Z G2 are
Zn-free. In turn, this allows us to construct a large class of hyperbolic groups
which are Zn-free.

In order to do this, we apply part (ii) of Theorem 2.4.1. However, this
theorem relies on certain translation lengths being equal. Thus, starting with
groups G1 acting freely on a Zn1-tree and G2 acting freely on a Zn2-tree, we show
how one can modify the actions in order to make them sufficiently compatible
to apply the result and deduce that G1 ∗Z G2 is Zn-free for some n.

Before proceeding, we introduce some notation. We write ej to denote the
element (0, . . . 0︸ ︷︷ ︸

j−1

, 1, 0, . . . 0) of Zn for 1 ≤ j ≤ n. We write Zk to denote not

only the ordered abelian group Z× · · · × Z︸ ︷︷ ︸
k

but also the subgroup 0 × · · · 0 ×

Z× · · · × Z︸ ︷︷ ︸
k

of Zn for k ≤ n.

In what follows it will be convenient to be able to change our actions by
scaling the metric and thinking of Zn as a subgroup of Zn+k. These modifi-
cations to actions on Λ-trees come under a general construction known as the
base change functor. Details may be found in [4], Theorem 4.7, Corollaries 4.8,
4.9.

Theorem 4.1 (Base Change Functor) Let h : Λ → Λ′ be an order preserv-
ing homomorphism between ordered abelian groups and let G be a group acting
by isometries on a Λ-tree, (X, d). Then there is a Λ′-tree, (X ′, d′) on which G
acts by isometries and a mapping φ : X → X ′ such that
(i) d′(φ(x), φ(y)) = h(d(x, y)), for all x, y ∈ X
(ii) φ(gx) = gφ(x) for all g ∈ G and x ∈ X
(iii) ‖g‖X′ = h(‖g‖X) for all g ∈ G.
In particular, if the action of G on X is free and h is injective, then the action
of G on X ′ is also free.

The base change functor by itself will not be enough for our purposes. The
next proposition describes another way in which the action on a Zn-tree may be

8



changed. Although it may seem like a rabbit out of a hat, Proposition 4.2 arises
quite naturally when one considers the geometry of a Zn-tree. To be precise,
if one looks at a Zn-tree X and shrinks the balls of radius Zn−1 to a point,
then the resulting object has the structure of a simplicial tree. The Zn-metric
on X is constructed from the metric on the simplicial tree along with what
Bass [2] refers to as end maps. These end maps allow a great deal of variation
in the metric on X. By adding the same amount to each end map, one can
follow the resulting change in the metric. If a group G acts isometrically on
X, one can also deduce the change in the translation length function and a
similar process can be performed by changing the end maps between the Zk-
balls. Proposition 4.2 reverses this reasoning by starting from a translation
length function and producing the Zn-tree.

Proposition 4.2 Let (X, d) be a Zn-tree on which the group G acts by isome-
tries and let πi : Zn → Z denote the projection onto the ith component of Zn

(from the left). Then for 1 ≤ i ≤ n and c ∈ Zn−i there is a Zn-tree (X ′, d′) on
which G acts isometrically such that ‖g‖′ = ‖g‖+ cπi(‖g‖) for all g ∈ G. If the
action of G on X is free then so is the action on X ′.

Proof: It is a standard fact (see [14, pp. 297–8] and [1, §8]) that if G acts
on a Λ tree X, then the translation function ‖.‖ : G → Λ satisfies the following
axioms.

0. Given g, h ∈ G with ‖g‖ > 0 and ‖h‖ > 0, then

max{0, ‖gh‖ − ‖g‖ − ‖h‖} ∈ 2Λ

I. ‖ghg−1‖ = ‖g‖ for every g, h ∈ G.
II. Given g, h ∈ G, either

‖gh‖ = ‖gh−1‖ or max{‖gh‖, ‖gh−1‖} ≤ ‖g‖+ ‖h‖.

III. Given g, h ∈ G with ‖g‖ > 0 and ‖h‖ > 0, either

‖gh‖ = ‖gh−1‖ > ‖g‖+ ‖h‖ or max{‖gh‖, ‖gh−1‖} = ‖g‖+ ‖h‖.

Conversely, the main theorem of [14] states that given a function ‖.‖ : G → Λ
satisfying the above axioms, there is a Λ tree, X upon which G acts isometrically
and with translation length function ‖.‖. Thus we shall verify that the axioms
hold for ‖.‖′ in the statement of this proposition, given that they already hold
for ‖.‖.

It is clear that since ‖.‖ satisfies axiom 0, so will ‖.‖′. Also, if ‖g‖ = ‖h‖ then
‖g‖′ = ‖h‖′ so that ‖.‖′ satisfies axiom I. Given that ‖1‖′ = 0, the remaining
two axioms may be verified from the following claim.
Claim: Let g1, g2, h1, h2 ∈ G. If ‖g1‖+‖g2‖ < ‖h1‖+‖h2‖ then ‖g1‖′+‖g2‖′ <
‖h1‖′ + ‖h2‖′. Also, if ‖g1‖+ ‖g2‖ = ‖h1‖+ ‖h2‖ then ‖g1‖′ + ‖g2‖′ = ‖h1‖′ +
‖h2‖′.
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Proof of claim As Zn is ordered lexicographically, ‖g1‖+ ‖g2‖ < ‖h1‖+ ‖h2‖
means that for some 1 ≤ t ≤ n,

πj(‖g1‖+ ‖g2‖) = πj(‖h1‖+ ‖h2‖), for 1 ≤ j < t, and
πt(‖g1‖+ ‖g2‖) < πt(‖h1‖+ ‖h2‖)

Note that if k ≤ i then πk(‖g1‖+‖g2‖) = πk(‖g1‖′+‖g2‖′) and πk(‖h1‖+‖h2‖) =
πk(‖h1‖′ + ‖h2‖′). Hence if t ≤ i then ‖g1‖′ + ‖g2‖′ < ‖h1‖′ + ‖h2‖′. However,
if t > i then πi(‖g1‖+ ‖g2‖) = πi(‖h1‖+ ‖h2‖) which implies that

‖g1‖′ + ‖g2‖′ = ‖g1‖+ ‖g2‖+ cπi(‖g1‖+ ‖g2‖)
< ‖h1‖+ ‖h2‖+ cπi(‖h1‖+ ‖h2‖)
= ‖h1‖′ + ‖h2‖′.

In either case, ‖g1‖′ + ‖g2‖′ < ‖h1‖′ + ‖h2‖′.
The second statement of the claim is clear.
With this claim, we can now verify the above axioms for ‖.‖′. The fact that

the resulting action is free follows from the claim since ‖g‖ > 0 for all g 6= 1
implies that ‖g‖′ > 0 for all g 6= 1.

Our main theorem now follows from the following.

Theorem 4.3 Let G1 and G2 be groups with maximal abelian subgroups, 〈t1〉 ≤
G1 and 〈t2〉 ≤ G2. Suppose that G1 acts freely without inversions on a Zn1-
tree X1 and G2 acts freely and without inversions on a Zn2-tree X2. Then the
associated amalgamated free product G1 ∗〈t1=t2〉 G2 admits a free action without
inversions on a Zn-tree for some n ≥ max {n1, n2}.

Note that if 〈ti〉 is not maximal abelian in Gi, then G1 ∗〈t1=t2〉 G2 fails to be
commutative transitive and hence cannot be tree-free.

Proof: We use Theorem 2.4.1(ii) applied to the amalgamated free product,
together with the given actions of Gi on Xi modified by several applications of
the base change functor and Proposition 4.2 as we now describe. To prevent
the notation from becoming too cumbersome, we will abuse notation slightly
throughout the proof, and denote a Λ-tree by Xi if it arises from Xi by such
modifications. Similarly, we will denote the hyperbolic length functions associ-
ated to the action of Gi on Xi by ‖.‖i (i = 1, 2).

Note first that there is no loss of generality in assuming that n1 = n2, for
otherwise, if n1 > n2 say, we can use the base change functor to replace the
Zn2-tree X2 by the Zn1-tree obtained via the embedding

(k1, k2, . . . , kn2) 7→ (k1, k2, . . . , kn2 , 0, 0, . . . , 0︸ ︷︷ ︸
n1−n2

).

Hence we may assume that both G1 and G2 are Zn1-free and that the trans-
lation length functions have the same codomain, ||.||i : Gi → Zn1 .

Suppose now that ‖ti‖i = mieji
+ λi, where mi > 0 is an integer, and

λi ∈ Zn1−ji . Again there is no loss of generality in assuming that j1 ≥ j2 (so
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that ‖t1‖1 belongs to the convex subgroup of Zn1 generated by ‖t2‖2). So put
j = j1 − j2 ≥ 0, and consider the embeddings

h1 : (k1, k2, . . . , kn1) 7→ (k1, k2, . . . , kn1 , 0, 0, . . . , 0︸ ︷︷ ︸
j

)

and
h2 : (k1, k2, . . . , kn1) 7→ (0, 0, . . . , 0︸ ︷︷ ︸

j

, k1, k2, . . . , kn1)

of Zn1 in Zn = Zn1+j .
These embeddings enable us to replace the Xi by Zn-trees on which the

Gi act. With respect to these new actions, we have ‖t1‖1 = m1ej1 + λ1 and
‖t2‖2 = m2ej1 + λ2 (since j1 = j + j2). Rescaling the metric on X1 by m2 and
the metric on X2 by m1 (and noting that these integers are positive), we now
have actions of Gi on Xi where the first non-zero components of ‖t1‖1 and ‖t2‖2

are equal and occur in the same position.
The results of these modifications are actions of Gi on Zn-trees Xi (i = 1, 2)

with ‖t1‖1 = mel + λ1 and ‖t2‖2 = mel + λ2 where m > 0, l = j1, and
λi ∈ Zn−l. Applying the base change functor associated to the embedding
h : (k1, k2, . . . , kn) 7→ (k1, k2, . . . kl,mkl+1, . . . ,mkn) to each Xi, we have ‖ti‖i =
mel + mλi (i = 1, 2).

Now apply Proposition 4.2 to the action of G1 on X1 with i = l and c =
λ2 − λ1. Then ‖t1‖′1 = mel + mλ1 + (λ2 − λ1)m = mel + mλ2 = ‖t2‖2.

The result follows by part (ii) of Theorem 2.4.1.

We note that by a result in [3], Corollary (torsion free products over Z)
p. 100, an amalgamated free product A ∗Z B, where A and B are torsion free
hyperbolic groups is itself hyperbolic if Z is maximal abelian in either A or
B. As a tree-free group is necessarily torsion free we may note the following
corollary.

Corollary 4.4 If G1 and G2 are hyperbolic then so is G.

The main reason for noting this corollary is that it allows one to construct
many examples of hyperbolic groups which act freely on Zn-trees. Let C be the
class of hyperbolic groups which act freely on Zn-trees for some n. Then this
class contains all free groups of finite rank and is closed under taking amalga-
mated free products over an infinite cyclic group, as long as the generator is not
a proper power in either of the vertex groups. Thus, C is a large class of torsion
free hyperbolic groups, most of which cannot act freely on an R-tree.

We note that Theorem 4.3 cannot easily be generalised to include the case
of HNN-extensions. The reason is that for amalgamated free products it is
possible to change the actions of the vertex groups independently so that two
given group elements have the same translation length. This is the key ingredient
to applying Theorem 4.7 of [2]. To generalise to the case of an HNN-extension,
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one would also have two group elements which would need to have the same
translation length. The fact that both elements would lie in the same group
means that one could not ensure this equality by using the base change functor
or Proposition 4.2. In fact, it can be shown that the group

〈x, y, t | t−1[x, y]t = [x2, y2]〉

cannot act freely on any Λ-tree. This is because for any free action of the free
group of rank 2, F (x, y), on a Λ-tree, we have ‖[x, y]‖ < ‖[x2, y2]‖. Hence the
obstruction for HNN-extensions to act freely on Zn-trees seems to rely more
heavily on the group structure.

For completeness we note that certain HNN-extensions, called “benign” in
[2], are known to be tree-free. Namely, if G is a Λ-free group and H is a maximal
abelian subgroup of G then the HNN-extension

〈G, t | t−1ht = h for all h ∈ H〉

is (Z× Λ)-free by [2], Corollary 4.16.
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