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• Start with an oversimplified exponential model.

• Define 𝑆(𝑡) to be the number of susceptible (healthy) people in the 
population.

• Note: assuming 𝑆(𝑡) is a continuous variable, but people are discrete. 

• If infection occurred randomly, the number of susceptible people would 
change in time according to an exponential decay law:

𝑑𝑆

𝑑𝑡
= −𝑘 𝑆,

where 𝑘 is a positive rate constant

Disease-spread models
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• The SI model

• For diseases that spread due to social contacts, the rate of change of 𝑆(𝑡)
depends on how many infected people there are in the population.

• Note: assumes that the population is well-mixed, so that any two members 
have equal chance of contact 

• Then the rate of change of 𝑆(𝑡) can be written as
𝑑𝑆

𝑑𝑡
= −𝑘(𝑡) 𝑆,

where 𝑘(𝑡) is a time-varying rate. Usual form:
𝑑𝑆

𝑑𝑡
= − 𝑀 𝑞

𝐼(𝑡)

𝑁
𝑆,

where 𝑀 𝑑𝑡 is the average number of contacts of a person in (small) time
interval 𝑑𝑡,  𝑞 is the probability of transmission when a susceptible
person meets an infected person, and 𝐼(𝑡)/𝑁 is the fraction of infected
people is the population of size 𝑁.

Disease-spread models
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• The SI model

• Writing 𝛽 = 𝑀𝑞 (called the contact rate), we have 
𝑑𝑆

𝑑𝑡
= −

𝛽

𝑁
𝑆 𝐼,

with the corresponding equation for 𝐼 𝑡 being
𝑑𝐼

𝑑𝑡
=
𝛽

𝑁
𝑆 𝐼.

• Note that in this model, 𝑆 𝑡 + 𝐼 𝑡 = 𝑁, where the population size 𝑁 is 
assumed to be constant.

• Sometimes we work with the fraction 𝜌(𝑡) = 𝐼(𝑡)/𝑁 of infected people in 
the population. Using  𝑆 = 𝑁 − 𝐼 = 𝑁(1 − 𝜌), we can rewrite the 𝐼(𝑡)
equation as

𝑑𝜌

𝑑𝑡
= 𝛽𝜌 1 − 𝜌 for 𝜌 𝑡 ,

which can be solved to give a closed-form expression for 𝜌 𝑡 .

Disease-spread models
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• The SIR model

• The SI model assumes that an infected person remains infectious forever, 
and so the long-time limit of the model, once infection begins, is 𝜌 → 1.

• In the SIR model, we assume that an infected person spontaneously 
recovers (and stops being infectious) at a recovery rate 𝛾, i.e. that they 
recover after a time that, on average, is 1/𝛾.

• The SIR equations are

𝑑𝑆

𝑑𝑡
= −

𝛽

𝑁
𝑆𝐼,

𝑑𝐼

𝑑𝑡
=
𝛽

𝑁
𝑆𝐼 − 𝛾𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼,

where 𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡) are the number of people in the respective
compartments, with

𝑆 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 = 𝑁.

Disease-spread models
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• 𝑁 = 4.9 × 106, 𝛽 = 0.6, 𝛾 = 0.2,  Δ𝑡 = 0.01

Examples of numerical solutions for SIR
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• Many extensions exist.

• For example, the SEIR model includes an “exposed” state, with another 
timescale, which models the individuals who have had contact with an 
infected person, but are not yet themselves infectious (capable of 
transmitting the disease)

𝑑𝑆

𝑑𝑡
= −

𝛽

𝑁
𝑆𝐼,

𝑑𝐸

𝑑𝑡
=
𝛽

𝑁
𝑆𝐼 −

1

𝐿
𝐸,

𝑑𝐼

𝑑𝑡
=
1

𝐿
𝐸 − 𝛾𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼,

where 𝐿 is the (average) latent period. 

• As before, the sum of the four compartment populations adds up to the 
total (constant) population: 

𝑆 𝑡 + 𝐸 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 = 𝑁.

• Note: the timescales we use are all average periods, while the model 
assumes exponentially-distributed residence times in compartments.

Disease-spread models
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• The basic reproduction number 𝑅0 is defined as the expected number of 
secondary cases produced by a single (typical) infection in a completely 
susceptible population.

• See J. M. Heffernan et al., “Perspectives on the basic reproductive ratio”, J. 
Royal Soc. Interface, 2, 281 (2005) for a discussion of the next-generation 
matrix approach.

• In simple models, 𝑅0 can also be calculated as the sum over compartments 
of the product of:

• the fraction of infectives that flow through the compartment
• the average time spent in that compartment
• the contact rate for that compartment

Reproduction number
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• In simple models, 𝑅0 can also be calculated as the sum over compartments 
of the product of:

• the fraction of infectives that flow through the compartment
• the average time spent in that compartment
• the contact rate for that compartment

• Example: SIR model

𝑑𝑆

𝑑𝑡
= −

𝛽

𝑁
𝑆𝐼,

𝑑𝐼

𝑑𝑡
=
𝛽

𝑁
𝑆𝐼 − 𝛾𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼,

• the fraction of infectives that flow through the 𝐼 compartment: 1
• the average time spent in  𝐼 compartment: 1/𝛾
• the contact rate for  𝐼 compartment: 𝛽

• So 𝑅0 = 𝛽/𝛾 for the SIR model

Reproduction number
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• In simple models, 𝑅0 can also be calculated as the sum over compartments 
of the product of:

• the fraction of infectives that flow through the compartment
• the average time spent in that compartment
• the contact rate for that compartment

• Example: SEIR model

• the fraction of infectives that flow through the 𝐼 compartment: 1
• the average time spent in  𝐼 compartment: 1/𝛾
• the contact rate for  𝐼 compartment: 𝛽

• So 𝑅0 = 𝛽/𝛾 for the SEIR model

Reproduction number
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• In simple models, 𝑅0 can also be calculated as the sum over compartments 
of the product of:

• the fraction of infectives that flow through the compartment
• the average time spent in that compartment
• the contact rate for that compartment

• Example: SEIIR model

• the fraction of infectives that flow through the 𝐼1 compartment: 𝑓
• the fraction that flow through the 𝐼2 compartment: 1 − 𝑓
• the average time spent in either 𝐼 compartment: 1/𝛾
• the contact rate for  𝐼1 compartment: ℎ𝛽; for 𝐼2 it is 𝛽

• So 𝑅0 =
𝑓ℎ𝛽

𝛾
+

(1−𝑓)𝛽

𝛾
= 𝑓ℎ + 1 − 𝑓 𝛽/𝛾 for this SEIIR model

Reproduction number
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• From Wikipedia: “A dynamical system is a system in which a function 
describes the time dependence of a point in a geometrical space. At any 
given time, a dynamical system has a state given by a tuple of real numbers 
(a vector) that can be represented by a point in an appropriate state space 
(a geometrical manifold). The evolution rule of the dynamical system is a 
function that describes what future states follow from the current state.”

• One-dimensional example:
𝑑𝑥

𝑑𝑡
= 𝐹 𝑥 𝑡 for 𝑥 𝑡 ,

where the function 𝐹(𝑥) is given.

• A fixed point 𝑥∗ is a value such that if 𝑥 𝑡∗ = 𝑥∗ at some time 𝑡∗, then 
𝑥 𝑡 = 𝑥∗ for all 𝑡 ≥ 𝑡∗.

• Fixed points can be determined by solving the equation
𝐹 𝑥∗ = 0.

Dynamical Systems
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• Example: the SI disease-spread model
𝑑𝜌

𝑑𝑡
= 𝛽𝜌 1 − 𝜌 for 𝜌 𝑡 = 𝐼(𝑡)/𝑁,

has two fixed points, at 𝜌∗ = 0 and at 𝜌∗ = 1.

• The early-time dynamics can be understood by making the approximation 
𝜌 ≈ 0 on the right-hand side of the differential equation, and retaining the 
first non-zero term (i.e. use a Taylor series expansion about the fixed point 
𝜌∗ = 0 and retain only the first nontrivial term):

𝑑𝜌

𝑑𝑡
≈ 𝛽𝜌,

which gives early-time exponential growth of infection:
𝜌 𝑡 ≈ 𝜌 0 exp 𝛽 𝑡 .

Dynamical Systems
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• Generalizing to higher-dimensional systems

• 𝑚-dimensional example:

𝑑𝑥

𝑑𝑡
= 𝐹 𝑥 𝑡 for 𝑥 𝑡 ∈ ℝ𝑚,

where the function 𝐹:ℝ𝑚 ↦ ℝ𝑚, is given.
• Example: SIR model, where 𝑥 𝑡 = [𝑆 𝑡 , 𝐼 𝑡 , 𝑅 𝑡 ].

Linearize the system about the fixed point 𝑥∗:

𝑑𝑥

𝑑𝑡
≈ 𝐹 𝑥∗ + 𝐽. (𝑥(𝑡) − 𝑥∗),

where the 𝐽 is the Jacobian matrix evaluated at 𝑥∗:

𝐽𝑖𝑗 = อ
𝜕𝐹𝑖
𝜕𝑥𝑗

𝑥∗

.

Dynamical Systems
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• Letting 𝑦 𝑡 = 𝑥 𝑡 − 𝑥∗ be the deviation from the fixed point, then (in the 
generic case where the eigenvectors of 𝐽 span ℝ𝑚), the solution of the 
linearized system is

𝑦 𝑡 =

𝑖=1

𝑚

𝜉𝑖 𝑒
𝑠𝑖𝑡 𝑢𝑖 ,

where 𝑠𝑖 and 𝑢𝑖 are the 𝑖th eigenvalue and corresponding eigenvector of 𝐽, 
and 𝜉𝑖 is the 𝑖th coefficient in the expansion of the initial condition over the
spanning basis:

𝑦 0 =

𝑖=1

𝑚

𝜉𝑖 𝑢𝑖 .

• The fixed point is asymptotically stable if Re 𝑠𝑖 < 0 for all 𝑖 = 1,2, … ,𝑚.

• The fixed point is unstable (with early-stage exponential growth) if 
Re 𝑠𝑖 > 0 for at least one 𝑖 ∈ {1,2, … ,𝑚}. 

Dynamical Systems
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• Example: SIR model, where 𝑥 𝑡 = 𝑆 𝑡 , 𝐼 𝑡 , 𝑅 𝑡 , so 𝑚 = 3.

• The full SIR equations are

𝑑𝑆

𝑑𝑡
= −

𝛽

𝑁
𝑆𝐼,

𝑑𝐼

𝑑𝑡
=
𝛽

𝑁
𝑆𝐼 − 𝛾𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼.

• Linearizing about 𝑥∗ = [𝑁, 0,0]:
𝑑𝑆

𝑑𝑡
≈ −𝛽𝐼,

𝑑𝐼

𝑑𝑡
= 𝛽𝐼 − 𝛾𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼,

so Jacobian is

𝐽 =
0 −𝛽 0
0 𝛽 − 𝛾 0
0 𝛾 0

,

with eigenvalues 0, 0 and 𝛽 − 𝛾.

Dynamical Systems
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• Thus, the all-healthy fixed point 𝑥∗ = 𝑁, 0,0 is:

stable if 𝛽 − 𝛾 < 0, i.e., if the reproduction number 𝑅0 =
𝛽

𝛾
< 1,

unstable if 𝛽 − 𝛾 > 0, i.e., if the reproduction number 𝑅0 > 1

• In the unstable case, the exponential growth rate is given by the eigenvalue 
𝛽 − 𝛾 = 𝛾(𝑅0 − 1). 

Dynamical Systems
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• Herd immunity

• Back to the full SIR equations:
𝑑𝑆

𝑑𝑡
= −

𝛽

𝑁
𝑆𝐼,

𝑑𝐼

𝑑𝑡
=
𝛽

𝑁
𝑆𝐼 − 𝛾𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼,

with 𝑅0 > 1.

• The rate of change of 𝐼(𝑡) switches from positive to negative when 
𝛽

𝑁
𝑆 − 𝛾

changes sign, which is when

𝑆 =
1

𝑅0
𝑁,

or when the fraction of the population that has been infected equals 1 −
1

𝑅0
.

• Exercise: derive the equation 
𝑑𝐼

𝑑𝑆
= −1 +

𝛾

𝛽

𝑁

𝑆
and solve for 𝐼(𝑆). Hence show 

that the final number of susceptibles, 𝑆∞ = lim
𝑡→∞

𝑆(𝑡), is the unique root in 

0,1/𝑅0 of the equation 𝑆∞ −
𝑁

𝑅0
ln

𝑆∞

𝑆 0
− 𝑆 0 − 𝐼 0 = 0.

Dynamical Systems
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• Plausible ranges of timescale parameters obtained from extensive 
literature review

• Contact rate 𝛽 to be calibrated.

• Non-pharmaceutical interventions (NPIs) modelled as time-varying  𝛽(𝑡). 

IEMAG SEIR model
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IEMAG SEIR model
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• First choice: constant rate 𝛽, fitted to match the early-stage exponential 
growth

• Second choice: As NPIs took effect, the best fit across several statistical 
models was produced by a Poisson model with rate following a Gompertz
function

𝐶𝑐 𝑡 ≈ 𝜃1 𝑒
−𝜃2𝜃3

𝑡

• Inverse problem: given a (smooth) fit to the data, can we invert the 
differential equations to determine the time-varying 𝛽 𝑡 ?

IEMAG SEIR model
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• The SI model with time-varying 𝛽(𝑡) can be written as

𝑑𝐼

𝑑𝑡
=
𝛽

𝑁
𝑆 𝐼 =

𝛽

𝑁
𝑁 − 𝐼 𝐼.

• Inverse problem: given the observed 𝐼(𝑡), what is 𝛽(𝑡)? 

• Explicit answer: 

𝛽 𝑡 =
𝑑𝐼

𝑑𝑡

𝑁

𝑁 − 𝐼 𝐼
.

• Similar idea for the full SEIR model, just more complicated…

• See, for example, A. Mummert, “Studying the recovery procedure for the
time-dependent transmission rate(s) in epidemic models”, J. Math. Biol.,
67, 483 (2013).

Inverting the SI model
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IEMAG SEIR model : scenario projections
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IEMAG SEIR model : scenario projections
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• From late June, the daily number of cases began to grow again.

• A new fitting approach required.

IEMAG SEIR model
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• Third choice: use GAM to produce a spline-based smooth fit for the 
inversion process.

IEMAG SEIR model
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IEMAG SEIR model : scenario projections
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• Third choice: use GAM to produce a spline-based smooth fit for the 
inversion process.

IEMAG SEIR model
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• Population-level differential-equation models are relatively simple to run 
and calibrate, but can give some insights into the role of parameters.

• The focus is on scenario analysis, not on “prediction”.

• The underlying spreading process is highly uncertain, so stochastic 
modelling needed to improve upon these deterministic models

• Other extensions and models:
• Beyond homogeneous: cohorting, e.g., on the basis of age and/or 

geography
• Beyond continuous: Agent-based models

Perspectives
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